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1 Introduction

There has recently been much interest in finding holographic realisations of systems invari-

ant under the non-relativistic conformal algebra starting with the work [1, 2] and discussed

further in related work [3]–[32]. Such systems are invariant under Galilean transformations,

generated by time and spatial translations, spatial rotations, Galilean boosts and a mass

operator, which is a central element of the algebra, combined with scale transformations. If

x+ is the time coordinate, and x denotes d spatial coordinates, the scaling symmetry acts as

x → µx, x+ → µzx+ , (1.1)

where z is called the dynamical exponent. When z = 2 this non-relativistic conformal

symmetry can be enlarged to an invariance under the Schrödinger algebra which includes

an additional special conformal generator.

The solutions found in [1, 2] with d = 2 and z = 2 were subsequently embedded into

type IIB string theory in [8–10] and were based on an arbitrary five-dimensional Sasaki-

Einstein manifold, SE5. The work of [9] also constructed type IIB solutions with d = 2

and z = 4 and again these were constructed using an arbitrary SE5. It was also shown

in [9] that the solutions with z = 2 and z = 4 can be obtained from a five dimensional

theory with a massive vector field after a Kaluza-Klein reduction on the SE5 space [9].

This procedure was generalised to solutions of D = 11 supergravity in [31]: using a similar

KK reduction on an arbitrary seven-dimensional Sasaki-Einstein space, SE7, solutions with

non relativistic conformal symmetry with d = 1 and z = 3 were found.

The type IIB solution of [8–10] with z = 2 do not preserve any supersymmetry [9]. One

aim of this note is to show that, by contrast, the type IIB solutions of [9] with z = 4 and the

D = 11 solutions of [31] with z = 3 are both supersymmetric and generically preserve two

supersymmetries. A second aim is to generalise both of these supersymmetric solutions to
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different values of z. We will construct new supersymmetric solutions using eigenmodes of

the Laplacian acting on one-forms on the SE5 or SE7 space. If the eiegenvalue is µ then we

obtain type IIB solutions with z = 1+
√

1 + µ and D = 11 solutions with z = 1+ 1
2

√
4 + µ.

This gives rise to type IIB solutions with z ≥ 4 and D = 11 solutions with z ≥ 3,

respectively. For the case of S5 we get solutions with z = 4, 5, . . . while for the case of S7

we get solutions with z = 3, 31
2 , 4, . . . and both of these preserve 8 supersymmetries.

Our constructions have some similarities with the construction of type IIB solutions

in [24] that were based on eigenmodes of the Laplacian acting on scalar functions on the

SE5 space. Our IIB solutions preserve the same supersymmetry and we show how our

solutions can be superposed with those of [24] while maintaining a scaling symmetry. An

analogous superposition is possible for the D = 11 solutions, which we shall also describe.

2 The type IIB solutions

The ansatz for the type IIB solutions we shall consider is given by

ds2 =
dr2

r2
+ r2

[

2dx+dx− + dx2
1 + dx2

2

]

+ ds2(SE5) + 2r2Cdx+

F5 = 4r3dx+ ∧ dx− ∧ dr ∧ dx1 ∧ dx2 + 4V ol(SE5)

−dx+ ∧
[

∗CY3
dC + d(r4C) ∧ dx1 ∧ dx2

]

(2.1)

where SE5 is an arbitrary five-dimensional Sasaki-Einstein space and the metric ds2(SE5)

is normalised so that the Ricci tensor is equal to four times the metric (i.e. the same

normalisation as that of a unit radius five-sphere). Recall that the metric cone over the SE5,

ds2(CY3) = dr2 + r2ds2(SE5) , (2.2)

is Calabi-Yau. The Kähler form on the CY3 is denoted ωij and the complex structure

is defined1 by Ji
j = ωikg

kj , where gij is the Calabi-Yau cone metric. We will define the

one-form η, which is dual to the Reeb vector on SE5 by

ηi = −Ji
j (d log r)j . (2.3)

The one-form C is a one-form on the CY3 cone. When C = 0 we have the standard

AdS5 × SE5 solution of type IIB which, in general, preserves eight supersymmetries (four

Poincaré and four superconformal), corresponding to an N = 1 SCFT in d = 4. More gen-

erally, we can deform this solution by choosing C 6= 0 provided that dC is co-closed on CY3:

d ∗CY dC = 0 . (2.4)

With this condition, F5 is closed and in fact it is also sufficient for the type IIB Einstein

equations to be satisfied. As we will show these solutions preserve one half of the Poincaré

supersymmetries. Note that the solution is invariant under the transformation

x− → x− − Λ, C → C + dΛ (2.5)

1While this is standard in the physics literature, often in the maths literature Ji
j = −ωikgkj .
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for some function Λ on the CY cone. Thus, if dC = 0, we can remove C, at least locally,

by such a transformation.

We will look for solutions where the one-form C has weight λ under the action of

r∂r. Then it is straightforward to check, following [1] and [2] that our solution is invariant

under non-relativistic conformal transformations with two spatial dimensions x1, x2 and

dynamical exponent z = 2 + λ. For example the scaling symmetry is acting as in (1.1)

combined with r → µ−1r, x− → µ2−zx−. Following the analysis of closed and co-closed

two forms on cones (such as dC) in appendix A of [33] we consider solutions constructed

from a co-closed one-form β on the SE5 space that is an eigenmode of the Laplacian

∆SE = (d†d + dd†)SE :

C = rλβ, ∆SEβ = µβ, d†β = 0 . (2.6)

It is straightforward to check that dC is co-closed providing that µ = λ(λ + 2). For our

applications we choose the branch λ = −1 +
√

1 + µ leading to solutions with

z = 1 +
√

1 + µ . (2.7)

A general result valid for any five-dimensional Einstein space, normalised as we have, is

that for co-closed 1-forms µ ≥ 8 and µ = 8 holds iff the 1-form is dual to a Killing vector

(see section 4.3 of [34]). Thus in general our construction leads to solutions with

z ≥ 4 . (2.8)

Since all SE5 manifolds have at least the Reeb Killing vector, dual to the one-form η, this

bound is always saturated. Indeed the solution of [9] with z = 4 is in our class. Specifically

it can be obtained by setting C = σr2η (and redefining x− → −x−/2): one can explicitly

check that η is co-closed on SE5 and is an eigenmode of ∆SE with eigenvalue µ = 8. Note

that for this solution the two-form dC is proportional to the Kähler-form of the Calabi-Yau

cone: dC = 2σω.

On S5 the spectrum of ∆S5 acting on one-forms is well known and we have µ =

(s + 1)(s + 3) for s = 1, 2, 3 . . . (see for example [35] eq (2.20)) leading to λ = s + 1

and hence new classes of solutions with z = 4, 5, 6 . . . . Note that these solutions come in

families, transforming in the SO(6) irreps 15, 64, 175, . . . . To obtain similar results for

T 1,1 one can consult [36].

We now discuss a construction that can be used when the spectrum of the Laplacian

acting on functions is known, but not acting on one-forms. For example, the scalar Lapla-

cian was studied in [40] for the Y p,q metrics [41], but as far as we know it has not been

discussed acting on one-forms. Specifically we construct (1, 1) forms dC on the CY cone

using scalar functions Φ on the cone as follows. We write

Ci = Ji
j∂jΦ (2.9)

for some function Φ on CY3. A short calculation shows that if

∇2
CY Φ = α (2.10)

– 3 –
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for some constant α then dC is co-closed. The two-form dC is a (1, 1) form on CY3 and it

is primitive, J ijdCij = 0, if and only if α = 0. Observe that the solution of [9] with z = 4

fits into this class by taking Φ = −σr2/2 and α = −6σ, leading to C = σr2η.

We now consider solutions with α = 0, corresponding to harmonic functions2 on the

CY cone with dC (1, 1) and primitive. We next write

Φ = rλf (2.11)

where f is a function on the SE5 space satisfying

−∇2
SE5

f = kf (2.12)

with k = λ(λ + 4) (see e.g. [37]). For the solutions of interest we choose the branch

λ = −2 +
√

4 + k leading to z =
√

4 + k. For the special case of the five-sphere we can

check with the results that we obtained above. The eigenfunctions f on the five-sphere are

given by spherical harmonics with k = l(l + 4), l = 1, 2, . . . and hence z = l + 2. The l = 1

harmonic appears to violate the bound (2.8). However, it is straightforward to see that the

construction for l = 1 leads to dC = 0 for which C can be removed by a transformation of

the form (2.5). Thus for S5 we should consider l ≥ 2 leading to solutions with z = 4, 5, . . . ,

as above. It is worth pointing out that for higher values of l some of the eigenfunctions will

also lead to closed C: if we consider the harmonic function on R
6 given by xi1 . . . xilci1...il

where c is symmetric and traceless then, with J = dx1 ∧ dx2 + dx3 ∧ dx4 + dx5 ∧ dx6 we

see that dC = 0 if J[i
jck]ji3...il

= 0.

2.1 Supersymmetry

We introduce the frame

e+ = rdx+

e− = r(dx− + C)

e2 = rdx1

e3 = rdx2

e4 =
dr

r
em = em

SE , m = 5, . . . , 9 (2.13)

where em
SE is an orthonormal frame for the SE5 space. We can write

F5 =B5 + ∗10B5 (2.14)

B5 =4e+ ∧ e− ∧ e2 ∧ e3 ∧ e4 − re+ ∧ dC ∧ e2 ∧ e3 (2.15)

where we have chosen ǫ+−23456789 = +1. The Killing spinor equation can be written

DM ǫ +
i

16
/FΓM ǫ = DM ǫ +

i

2
/BΓM ǫ = 0 . (2.16)

2Note that in general the one-form C defined in (2.9) has a component in the dr direction, unlike in

(2.6). However, locally we can remove it by a transformation of the form (2.5). Also, one can directly show

that the resulting one-form β is co-closed on the SE5 space.
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We are using the conventions for type IIB supergravity [42, 43] as in [44] and in particular,

Γ11 = Γ+−23456789 with the chiral IIB spinors satisfying Γ11ǫ = −ǫ.

If ǫ are the Killing spinors for the AdS5 × SE5 solution, then we find that we must

also impose that

Γ+−23ǫ = iǫ

Γ+ǫ = 0 . (2.17)

The first condition maintains the Poincaré supersymmetries but breaks all of the super-

conformal supersymmetries (this can be explicitly checked using, for example, the results

of [45]). The second condition breaks a further half of these3. Thus when dC 6= 0, we

preserve two Poincaré supersymmetries for a generic SE5 and this is increased to eight

Poincaré supersymmetries for S5.

3 The D = 11 solutions

The construction of the D = 11 solutions is very similar. We consider the ansatz for D=11

supergravity solutions:

ds2 =
dρ2

4ρ2
+ ρ2

[

2dx+dx− + dx2
]

+ ds2(SE7) + 2ρ2Cdx+

G = −3ρ2dx+ ∧ dx− ∧ dρ ∧ dx + dx+ ∧ dx ∧ d(ρ3C) (3.1)

where SE7 is a seven-dimensional Sasaki-Einstein space and ds2(SE7) is normalised so that

the Ricci tensor is equal to six times the metric (this is the normalisation of a unit radius

seven-sphere). It is convenient to change coordinates via ρ = r2 to bring the solution to

the form

ds2 =
dr2

r2
+ r4

[

2dx+dx− + dx2
]

+ ds2(SE7) + 2r4Cdx+

G = −6r5dx+ ∧ dx− ∧ dr ∧ dx + dx+ ∧ dx ∧ d(r6C) . (3.2)

In these coordinates the cone metric

ds2
CY = dr2 + r2ds2(SE7) (3.3)

is a metric on Calabi-Yau four-fold. We will use the same notation for the CY space as in

the previous section.

When the one-form C is zero we have the standard AdS4 × SE7 solution of D = 11

supergravity that, in general, preserves eight supersymmetries. We again find that all the

equations of motion are solved if C is a one-form on CY4 and the two-form dC is co-closed

d ∗CY dC = 0 . (3.4)

3That we preserve the Poincaré supersymmetries suggests that we can extend our solutions away from

the near horizon limit of the D3-branes. This is indeed the case but we won’t expand upon that here.
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The solutions are again invariant under the transformation (2.5). We will consider solutions

where the one-form C has weight λ under the action of r∂r, corresponding to dynamical

exponent z = 2 + λ/2. As before, using the results in appendix A of [33], we consider

solutions constructed from a co-closed one-form β on the SE7 space that is an eigenmode

of the Laplacian ∆SE:

C = rλβ, ∆SEβ = µβ, d†β = 0 . (3.5)

One can check that dC is co-closed providing that µ = λ(λ + 4). For our applications we

choose the branch λ = −2 +
√

4 + µ leading to solutions with

z = 1 +
1

2

√

4 + µ . (3.6)

A general result valid for any seven-dimensional Einstein space, normalised as we have, is

that for co-closed 1-forms µ ≥ 12 and µ = 12 holds iff the 1-form is dual to a Killing vector

(see section 4.3 of [34]). Thus in general our construction leads to solutions with

z ≥ 3 (3.7)

and the bound is again saturated for all SE7 spaces. Observe that the solutions of [31]

with z = 3 fit into this class. Specifically they are obtained by setting C = σr2η (after

redefining x → x/2 and x− → −x−/8). On S7 the spectrum of ∆S7 is well known and we

have µ = s(s+6)+5 for s = 1, 2, 3 . . . (see for example [34] eq (7.2.5)) leading to λ = 1+ s

and hence new classes of solutions with z = 3, 31
2 , 4, . . . . These solutions come in families

transforming in the SO8) irreps 28, 160v, 567v, . . . . Results on the spectrum of the

Laplacian on some homogeneous SE7 spaces can be found in [46–48].

As before we can construct (1, 1) co-closed two-forms dC using scalar functions Φ on

CY4 We write

Ci = Ji
j∂jΦ, ∇2

CY Φ = α . (3.8)

and dC is again primitive if and only if α = 0. The solutions of [31] with z = 3 arise by

taking Φ = σr2 and α = −8σ leading to C = σr2η. We now focus on solutions with α = 0,

corresponding to harmonic functions on the CY cone. We take

Φ = rλf (3.9)

where f is a function on the SE7 space satisfying

−∇2
SE7

f = kf (3.10)

with k = λ(λ + 6). For our applications we choose the branch λ = −3 +
√

9 + k leading

to solutions with z = 1
2 + 1

2

√
9 + k. For example, on the seven-sphere the eigenfunctions f

are given by spherical harmonics with k = l(l + 6) with l = 1, 2, . . . and hence z = 2 + l/2.

Excluding the l = 1 harmonic, as it can be removed by a transformation of the form (2.5),

for S7 we are left with solutions with z = 3, 7/2, 4, . . . , as above.

– 6 –



J
H
E
P
0
3
(
2
0
0
9
)
1
3
8

3.1 Supersymmetry

We introduce a frame

e+ = r2dx+

e− = r2(dx− + C)

e2 = r2dx

e3 =
dr

r
em = em

SE , m = 4, . . . , 10 . (3.11)

We thus have

G = 6e+ ∧ e− ∧ e2 ∧ e3 + r2e+ ∧ e2 ∧ dC

∗11G = −6V ol(SE7) + dx+ ∗CY dC (3.12)

where we have chosen the orientation ǫ+−23....10 = +1.

The Killing spinor equation can be written as

∇M ǫ +
1

288
[ΓM

N1N2N3N4 − 8δN1

M ΓN2N3N4]GN1N2N3N4
ǫ = 0 . (3.13)

We are using the conventions for D = 11 supergravity [49] as in [50] and in particular

Γ+−2345678910 = +1.

If ǫ are the Killing spinors arising for the AdS4 × SE7 solution, then we find that we

must also impose that

Γ+−2ǫ = −ǫ

Γ+ǫ = 0 . (3.14)

The first condition maintains the Poincaré supersymmetries but breaks all of the supercon-

formal supersymmetries. The second condition breaks a further half of these. Thus when

dC 6= 0, we preserve two Poincaré supersymmetries for a generic SE7 and this is increased

to eight Poincaré supersymmetries for S7.

3.2 Skew-Whiffed solutions

If AdS4 × SE7 is a supersymmetric solution of D = 11 supergravity, then if we “skew-

whiff” by reversing the sign of the flux (or equivalently changing the orientation of SE7)

then apart from the special case when the SE7 space is the round S7, all supersymmetry

is broken [51]. Despite the lack of supersymmetry, such solutions are known to be per-

turbatively stable [51]. Similarly, if we reverse the sign of the flux in our new solutions

(3.2), we will obtain solutions of D = 11 supergravity that will generically not preserve

any supersymmetry.

– 7 –
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4 Further generalisation

We now discuss a further generalisation of the solutions that we have considered so far,

preserving the same amount of supersymmetry, which incorporate the construction of [24].

For type IIB the metric is now given by

ds2 =
dr2

r2
+ r2

[

2dx+dx− + dx2
1 + dx2

2

]

+ ds2(SE5) + r2
[

2Cdx+ + h(dx+)2
]

(4.1)

with the five-form unchanged from (2.1). The conditions on the one-form C are as before

and we demand that h is a harmonic function on the CY3 cone:

∇2
CY h = 0 . (4.2)

Choosing h to have weight λ′ under r∂r we take

h = rλ′

f ′ , (4.3)

where f ′ is an eigenfunction of the Laplacian on SE5 with eigenvalue k′

−∇2
SE5

f ′ = k′f ′ (4.4)

with k′ = λ′(λ′ + 4). If we set C = 0 and choose the branch λ′ = −2 +
√

4 + k′ then

these are the solutions constructed in section 5 of [24] and have dynamical exponent z =
1
2

√
4 + k′. As noted in [24] an application of Lichnerowicz’s theorem [52, 53] implies that

these solutions have z ≥ 3/2 with z = 3/2 only possible for S5. Now if there is a scalar

eigenfunction with eigenvalue k′ and a one-form eigenmode of the Laplacian on SE5 with

eigenvalue µ that satisfy z = 1
2

√
4 + k′ = 1 +

√
1 + µ then we can superpose the solution

with h as in (4.3) and the one-form C as in (2.6) and have a solution with scaling symmetry

with this value of z. For example on S5, using the notation as before, we have k′ = l′(l′+4),

l′ = 1, 2, . . . and µ = (s+1)(s+3), s = 1, 2, . . . and hence we must demand that l′ = 2(s+2),

s = 1, 2, . . . , giving solutions with z = 3 + s.

The story for D = 11 is very similar. The metric is now given by

ds2 =
dr2

r2
+ r4

[

2dx+dx− + dx2
]

+ ds2(SE7) + r4
[

2Cdx+ + h(dx+)2
]

(4.5)

with the four-form unchanged from (3.2). The conditions on the one-form C are as before

and we demand that h is a harmonic function on the CY4 cone:

∇2
CY h = 0 . (4.6)

Choosing h to have weight λ′ under r∂r we take

h = rλ′

f ′ , (4.7)

where f ′ is an eigenfunction of the Laplacian on SE7 with eigenvalue k′

−∇2
SE7

f ′ = k′f ′ (4.8)

– 8 –
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with k′ = λ′(λ′ + 6). If we set C = 0 and chose the branch λ′ = −3 +
√

9 + k′ then these

solutions have dynamical exponent z = 1
4(1 +

√
9 + k′). Lichnerowicz’s theorem [52, 53]

implies that these solutions have z ≥ 5/4 with z = 5/4 only possible for S7. If there is a

scalar eigenfunction with eigenvalue k′ and a one-form eignemode of the Laplacian on SE7

with eigenvalue µ that satisfy z = 1
4(1 +

√
9 + k′) = 1 + 1

2

√
4 + µ then we can superpose

the solution with h as in (4.7) and the one-form C as in (3.5) and have a solution with

scaling symmetry with this value of z. For example on S7, using the notation as before,

we have k′ = l′(l′ + 6), l′ = 1, 2, . . . and µ = s(s + 6) + 5, s = 1, 2, . . . and hence we must

demand that l′ = 2(s + 3), s = 1, 2, . . . , giving solutions with z = 1
2(5 + s).
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